可以不那么唯物的形容一下。
如果将宇宙的过去未来,每一瞬间的每一个事件,都当做是一个集合当中的元素,那么这个记录了宇宙所有信息的集合本身,就也是一个客观🅷存在。
就好📎像🙋宇宙本身记录🛸♧了“历史”一样,信息是不灭的。
但是,黑洞无毛定理却也是真实的。
除☕了📎角动量等五个属性之外,黑洞不会有更多的信息。
这一点甚🈳🏑至比仙盟的推测更加惯用🔓⛰🞁。心想哥是在无法说谎的状态之下承认了这一点的。
换句话说,在王崎亲自对黑洞进行🔓⛰🞁近距离观察之前,心想哥的话,就是最强的证据了。
目前来说,找不到可信度更高的东西。
黑洞的质量与其事件视界的面🝉积呈正比。换句话说,投入多少个原子,事件视界就会增长多少面积,这些都是固定的。
而从另一个角度来说,投入的信息越多,黑洞事件视界的🁻面积也就越大。
信息,很有可能是记🛸♧录在黑洞事件视界的面上的。
因此,就有了全息原理。
人们甚至从黑洞事件视界的面积公式,推测出了另外一个物理量“记录一比特信息,最少需要😑多大面积的事件视界”。
这碑成为“普朗克面积”。
记录1比特的信息,最少也需要🙣10^-66平方厘米。
全息原理认为,目前所见的宇🝉宙,是真实宇宙的投影。以比较宏观的观点来看,整个宇宙,可以视为一个呈现在宇宙学视界上二维信息结构,而日常观察到的三位空间则是巨观尺度且低能量的有效描述。
这里解释一下“宇宙学视界”。所谓宇🇰🜋🀤宙学视界,便是宇宙的事件视界。
史瓦西半径是一个天体被压缩成黑洞的最大半径。只要低于史瓦西半径,天体就会变成黑洞。
而从史瓦西半径公式可知,史瓦西半径与天体质🏕🚀🐖量🟊呈正比。
而在密度不变的🄞⚐情况下,那么可以从球体体积公式推测出,物体的半径和质量的立方根成正比。
换句话说,如果一个物体质量很大🔓⛰🞁,那么它史瓦西半径,甚至会大于它的自然半径。